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Preface

L'his report describes research into several areas of groundwater model-
ing. The primary focus of this work is basic research on computational al-
gorithms, but a secondary aspect is a study of the use of scientific
visualization technology. The work was funded unde: the In-House Labo-
ratory Independent Research (ILIR) program at the U.S. Army Engineer

search and the publication of this report were funded by the Strategic Envi-
ronmental Research and Development Program (SERDP), Department of
Defense.

Dr. James H. May and CPT Edward Mazion, Engineering Geology
Branch, Earthquake Engineering and Geophysics Division, Geotechnicul
Laboratory (GL), WES, performed the 2-D Rocky Mountain Arsenal

(PMA) study described in this report. Mr. John B. Palmerton, Rock Me-
chanics Branch, Soil and Rock Mechanics Division, GL, WES, performed
the analysis of Cerrilios Dam in Puerto Rico discussed in this report.

Most Gf the scientific visualization work for RMA was done by Mr. Scott
Weberg, Scientific Visualization Center (SVC), Advanced Technology
Center (ATC), Information Management Division (IMD), Information
Technology Laboratory (ITL), WES. Mr. Charles S. Jones. SVC, ATC,
IMD, ITL, WES, assisted in the visualization for contaminant transport.
Cray Y-MP improvements were made by Mr. Alex Carrillo, Department of
Defense High Performance Computing Center. ATC, IMD, ITL, WES.
Dr. Fred T. Tracy, Interdisciplinary Research Group, Computer-Aided En-
gineering Division (CAED), ITL, WES. wrote this report (Mr. Carrillo pro-
vided an excellent draft documenting his work) and performed the
emainfng work- dscribcd hcrcin. Dr. ReedL. Ma 1.._ A C.i,,

of CAED during this study and preparation of this report, and Director of
ITL was Dr. N. Radhakrishnan.

This work was coordinated with the WES Groundwater Modeling Team
whose chairman is Dr. Jeffery P. Holland. Director, Computational Hydrau-
lics Institute, Hydraulics Laboratory, and Program Manager, Groundwater
Modeling Program.
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Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.
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Introduction

Why This Research?

The flow of groundwater is an extremely complex proccss to model be..
cause of the diverse types of flow and the hcterogeneous nature of the po-
rous media. When the transport of diverse types of contaminants is added
to the problem, the difficulty and complexity of modeling real-world three-
dimensional (3-D) groundwater flow increases by orders of magnitude.
Also, it is very difficult to visualize groundwater itput and output into nu-
merical programs because of the complexity of the geometry and heteroge-
neity of the porous medium. This report documents basic and applied
research in the area of groundwater modeling and visualization.

Cray Y-MP

The use of a supercomputer such as a Cray Y-MP is also essential for
the timely computation of results of a large 3-D groundwater model. This
is because the highly nonlinear nature of the soil properties in the unsatu-
rated zone creates a tremendous computational load, and traditional tech-
niques do several iterations at each time-step in an attempt to achieve
suitable answers. Further complications arise because groundwater flow
is sometimes modeled over extremely long periods of time, putting an ad-
ditional requirement that the numerics remain stable and robust. This re-
port describes research findings in this area as well.

F-4

Scientific Visualization

The use of graphical tools to visualize both the input data (grid with ini-
tial and boundary conditions) and the results (pressure, head, velocity, con-
centration, etc.) is absolutely essential for successful modeling. This
report also describes the scientific visualization techniques developed in
this research.

Chapter 1 Introduction



Chapter Summaries

Chapter 2 uses the application of the real-world problem of flow near
Rock'y Mountain Arsenal (RMA) to help answer the question of when a
3-D analysis is needed. A comparison of a two-dimensional (2-D) plan
view time-dependent solution taken to steady state to a true 3-D saturated
flow solution where the phreatic surface is iterated to the steady-state solu-
tion ;s presented. Buth these solutions use the finite element method
(FEM). The details of what was done to create the 3-D FEM program and
data are given. Examples o' how visualization was used arc also given.

The running times for the 3-D saturated flow steady-state RMA prob-
Icem using classical FEM solution techniques showed that f-,r 3.-D, time-
dependent, norlinear problems involving unsaturated or multiphase flow

with contaminant transport, the running times even on the Cray Y-MP
could possibly becomne prohibitive. Therefore, Chapters 3 and 4 describe
basic research into other techniques that are potentially faster and, for
those problems where they can be applied, should deliver an equivalent
quality answer much more efficiently. Specifically, the finite volume
(FV) method is first applied to saturated/unsaturated flow and then to con-
taminant transport and compared to classical FEM solutions. The tech-niques of nonlinear iteration, operator splitting, etc., are also discussed.
Both experimental results and analytical solutions are used to compare dif-
ferent procedures. Finally, contaminant transport results are viewed usirng
scientific visualization tools.

2 Chaptel 1 Introduction

I .'



S2 Saturated Flow

Introduction

Engineers and scientists at the Geotechnical Laboratory (GL), U.S.
Army Engineer Waterways Experiment Station (WES), havc made a study
of flow in the RMA region. The program used for the study is a modified
version of a 2-D plan view saturated and confined flow FEM code
(Warner 1987) that accepts a triangular grid. This report describes three
additional things that were done as follows:

a. Three-dimensional study. A 3-D grid was built from the given 2-D
data, and a 3-D FEM unconfined, saturated flow program was ap-
plied to the same problem with the 2-D and 3-D results then comn-
pared. This was done to help answer the question of when a 3-D
solution is required for a given proble.m.

b. Cray Y-MP optimization. Special vectorization techniques were in-
vestigated to see what improvements in running times could be
achiev-d over the generic Unix version of the 3-D codc. Computa-
tional improvements valid for any scientific computer were also
made.

c. Scientific visualization. Scientific visualization techniques were ap-
plied to the RMA data.

4 1 The 3-D computations wer2 done on a Cray Y-MP using a modified ver-.

sion of a 3-D see page/groundwater FEM program (T.rac... 1,91 1 cS... ,r C, , C. \... .. , ' 1', . S iun-

tific visualization tools used were commercial programs such as
Multi-Purpose Graphics .ystem (MPGS) (Cray 1990) and customized soft-
ware developed in the Scientific Visualization Center (SVC), WES. All
scientific visualization was done on Silicon Graphics workstations.

• 3
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Description of Problem

The oroblem consists of partially confined and partially unconfined
groundwater flow in a region near RMA. The 2-D triangular mesh used
for the pioblem is shown in Figure 1. The nodes with triangles have
heads specified as a boundary condition, and the nodes identified with cir-
cles are observation wells where differing amounts of water are being ex-
tracted. The immediate purpose of the comp,;. -on is a calibration where
the unknown hydraulic conductivities are adjusted so that the initial heads
remain thie final heads after the problem is run to a steady-state solution.
A slurry trench has been installed in the flow region to modify flow, and a
zoom of the grid for this region is shown in Figure 2. The slurry trench is

I',

w_.

_It

Figure 1. FEM grid with boundary conditions

Chapier 2 Saturated Flow
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Figure 2. Zoomed area showing slurry trench

identified by all the nodes along line segment AB. An impervious wall
such as a slurry trench is modeled by having d.1ferent nodes on one side
of the wall as compared to the other side. This particular slurry trench has
many more ncdes on the left side than on the right side.

SThere are two basic layers which are alluvium and bedrock. The hy-
draulic conductivities, however, vary greatly within these two broad cate-

gories of material. Figure 3 shows a color contour plot of the hydraulic
conductivity of the alluvium, and Figure 4 shows a color contour plot of
thc hydraulic conductivity of the bedrock. Figure 5 shows a color contour
plot of the initial toI tl head values. The problem is now completely
specified.

Chapter 2 Saturaled Flow
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Figure 3. Hydraulic conductivity of the alluvium
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2. 25E +00

FFigure 4. Hydraulic conductivity of the bedrock
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b. 13L+033

Figure 5. Initial head values

U 2-D Results
Figure 6 shows the results of one of the intermiedilate calibrations. The

amount.11 of' drawdown is small in m-ost places, but there are still some "hlot

spots" to fix. It is clear that thc color contour plot is an excellent tool to

Cluickly determine the areas that need more work. Pic~ final calibration

will bc presented in thie GL report to RMA. The purposes of' this chapter

are wvell served by using these intermediate results, and the problcm of

using possibhiy proprietary i nformat ion is avoided.

8 Chapter 2 Saturated Flow
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SFigure 6. Intermediate calibration drawdown results

3-D Study

At this point a study was begun to determine how important a true 3-D
solution is and how to visualize the 3-D results. Cray optimization was
also investigated by personnel in the DoD High Performance Computing
(HPC) Center group in ITL.

3-D grid

A 3-D grid was generated from the 2-D data by adding intermediate lay-
ers (see the hidden line view of the grid shown in Figure 7) by converting

I 9
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Figure 8. 2-D triangles converted to 3-D prisms

" ~alluvium
water elevation dly

alluvium

[a~. bedrock

Figure 9. Specified head in alluvium
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Since this is a calibration at a rather late stage, step a was not repeated at
each iteration in the 3-D groundwater program to find the free surface.
However, this should be incorporated into the program for doing studies
beyond the calibration.

For an unconfined flow situation where the water table is in the bed-
rock, the elevation of generated 3-D node 2 is given the value of the water
elevation, and the given Q is divided equally between generated 3-D
nodes I and 2.

3-D groundwater model

The 3-D groundwater model used in this study is a modification of one
written by this author for 3-D steady-state, unconfined saturated flow.
The modifications required are as follows:

a. Hydraulic conductivity data. Typically, in an FEM program, the
material properties are specified separately, and each set is given a
number. For instance, material type 1 can represent sand, and mate-
rial type 2 can represent clay. Thus, each element has a material
type number specified, and those values specified remain constant
inside the given element. The data for RMA is different. There
were provided one hydraulic conductivity for bedrock and one hy-
draulic conductivity for alluvium for each 2-D node. Therefore, no
data were provided for element properties, but the node data were
extended to include the two hydraulic conductivities. However.
each element still had to be identified as being either bedrock or
alluvium.

h. Stiffness matrix computation. Since hydraulic conductivity is not
constant inside each .lement, the stiffness matrix computation had
to be modified. The material type number for each element now
represents either I for bedrock or 2 for alluvium. The finite ele-
ment type used in the 3-D model requires numerical integration to
form the stiffness matrix. So at integration point j, the hydraulic
conductivity kV is computed using the eight-node isoparametric ele-
ment formulation

8
k_- Nj~i

i=1I

The interpolation functions are

N ij = I ij ) (1 + li j (1j + i j) (2)

12 Chapter 2 Saturated Flow
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where

(ýi, Tli, ýi) ( l, 1', ') coordinates at node i

( j, 71j) = (i. T, ) coordinates at interpolation point j-

ki hydraulic conductivity at node i

c. MPGSfiles. MPGS files were written for the original grid, the mod-
ified grid that conforms to the free surface, a scaler file containing
total head, and a vector file containing Darcian velocities.

Visualization of 3-D results

After a valid 3-D grid was produced and a correct 3-D groundwater
model was completed, the 3-.D results were obtained. It is, of course, now
very important to visualize the resulting voluminous set of output data. It
is extremely difficult to visualize 3-D groundwater flow for the following
three reasons:

a. Relatively flat grid. The 3-D grid in the z direction is extremely flat
compared to the plan view.

b. No specific object. In computational fluid dynamics (CFD) there
are airplanes, helicopters, etc., that form an excellent background
for visualization. However, in groundwater flow no such tangible
objects exist. •

c. Heterogeneity. In CFD applications there is only a single homoge-
neous medium such as air. Flow in porous media deals with signifi-cantly different properties which, at. time,,, varies several orders of •

magnitude.

Nevertheless, the following give a good representation of the flow pattern:

a. Color contours. Color contours on visible faces used to show varia-
tion of scalar quantities.

b. Isolevels. The 3-D equivalent of a contour plot where each isolevel
in space is a surface representing a scalar quantity with the same
value.

Chapter 2 Saturated Flow 13



c. Particle traces. Lines in space that show the paths of particles after
being released in the prous medium.

d. Translucency. The ability to see through an object or data to see
what is behind it.

e. Animation. Viewing many scenes (30 frames per second) in succes-
sion showing movement of rotation, translation, flow, etc.

As examples, Figure 10 shows the hidden line plot of the grid with
total head in color contours, and Figure 11 shows the 3-D grid as translu-
cent with three isolevels. The fact that the isolevels are essentially verti-
cal shows that there is little variation of the results in the z direction.

5.2 1E-~03

5. gM4÷03

5. 1E.O03

5. 13E-03

5. 10E.03 I

Figure 10. Total head contours with the hidden line plot

I14I i14Chapter 2 Saturated Flow

F



I K

Lvi

giguro 11. Translucent grid with isolevels
Chapter 2 Saturated Flow 

1

j1ý 161111



Cray Y-MP improvements

Performance issues vere addressed by Mr. Alex Carrillo, HPC Center,
WES. For evaluation purposes, in addition to the RMA groundwater
model, a smaller aquifer groundwater model and two different grid sizes
of the Cerrillos Dam in Puerto Rico seepage model were used (the
Cerrillos Dam study was performed by Mr. John Palmerton, GL, WES).
Table I describes various aspects of the models. First, the number of
nodes and elements for each model is given. Next, the number of nonlin-
ear iterations required to obtain the steady-state solution is given, Each it-
eration can be summarized as formulating and solving the following set of
equations:

[K]' {A.'(p = - {AQ}i'

Ip)+' (Tp}i + {Aq)i (3)

Table 1
Model Information

Cerrillos Cerrillos

Model RMA Aquifer (Small) (Big)

Nodes 23,513 11,578 10,915 87,572

Eluments 38,796 9,855 8,469 77,124

Nonlinear Iterations 48 5 8 9

Original Global Bandwidth 883 1,594 502 1,974

Original Average Local
Bandwidth 3E4 1,075 467 18,55

New Global Bandwidth 482 C75 303 1,481

Now Average Local
Bandwidth 356 436 283 1,092

Original CPU 12,548 3,747 517 33,148

Original I/O 5,149 910 273 8,040

New Direct Solver CPU 188 33 47 3,906

Now Direct Solver I/O 30 1 1 1.235

New Iterative Solver CPU 594 29 21 278

Now Itorative Solver I/O 0 0 0 0

16 Chapter 2 Saturated Flow
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where

[K]i = stiffness matrix at the I'th iteration

{* = change in total head or potential vector at the i'th iteration

{AQ~i = residual flow vector at the i'th iteration:1 Because the solution is steady state, a significan~t savings can be achieved
by updating [K]V only with respect to changing boundary conditions, and
this is done. (AQ)' must, however, be computed using the current values
of the element stiffness matrices.

The initial profiling of the code revealed that the primary area affect-ing performance was the solution process (the solution of the set of simul-
taneous linear equations in Equation 3). Not only was this part a
computational bottleneck, but the I1O required for the out-of-core solver
also severely inhibited performance. The I/O for storing stiffness and
other matrices was also a significant factor. Thus, formulating and solv-
ing Equation 3 with the accompanying I/O, along with some standard im-
"provements, were the primary focus of the evaluation and modifications.
In fact, many of the improvements made to the program apply equally
well to a generic engineering workstation as well as a supercomputer.

Solution process. Changes to the solution algorithm branched into
two directions. First, a more efficient direct solver, a Cholesky factoriza-

f tion, was used to replace the Gaussian elimination routine being used in
All the original program. Secondly, a preconditioned conjugate gradient-like

method was added to provide an iterative solver capability. Various prob-
lem characteristics affected the performance of each method. The
Cholesky factorization routine was developed using a LAPACK library
subroutine (Anderson, et al. 1990) as a template. Using this new algo-
rithm, the grid was first divided into 64-node blocks. Then, an out-of-
core capability was built around the routine, and minor modifications-I were made to take advantage of the smaller local bandwidth of each
block. Also, for an unchanging stiffness matrix between nonlinear itera-
tions, reuse of the factorization from the previous iteration greatly re-
duced the computations required for some problems. Coupled with a
more sophisticated bandwidth minimization routine (Gibbs, Poole, and
Stockmeyer 1976), significant time reductions were obtained for the direct
solution process. (Table I shows both the global and average local
bandwidth using both the original and tne new bandwidth minimization
routines.)

The introduction of the preconditioned conjugate gradient-like methr)d
added an iterative solver capability. The reduced memory requirements of

't this method eliminated the need for an out-of-core solution. Not as stable
as the direct solvers, the iterative solvers can have problems converging

Chapter 2 Saturated Flow 17



for poorly conditioned problems. However, for large, well-conditioned
problems, they can perform significantly better than the direct solvers.

I/O. Several changes were made to improve the I/O and memory man-
agement of the program. First, the stiffness matrix was switched from a
banded storage format to a sparse matrix format. This allowed assembly
and boundary condition modifications to be completed in-core and elimi-
nated many of the inefficiencies associated with the out-of-core solver.
This also allowed a simp!er transition between the iterative and direct
solvers. The reduced bandwidths also decreased the I/O requirements
for the out-of-core solver, making the use of faster disks more feasible.
Finally, the iterative solver eliminated the need of any out-of-core I/Otime altogether.

General improvements. Enhanced vectorization and other im-
provements in coding were also accomplished. Through effective use of
arrays, redundant work was eliminated, and several functions were trans-
formed into level 3 BLAS routines (Dongarra, et al. 1990).

Results. Table I shows the CPU times and I/O wait times (in seconds)
for the original program, the ,.ew program using the direct (Cholesky)
solver, and the iterative (preconditioned conjugate-like) solver. Specific
characteristics of each problem produced the performance differences be-
tween th- direct and iterative solvers. In general, however, the iterative

method is preferred for large, well-conditioned problems. The RMA
model tended to produce a poorly conditioned stiffness matrix, resulting
in the iterative method having a difficult time converging. The stiffness
matrix also remained unchanged for all the 48 nonlinear iterations, so sub-
stantial benefit was obtained from the reuse of the initial factorization.
Thus, the direct solver provided the best performance. The aquifer model
was well-conditioned, greatly improving the performance of the iterative
method. It, too, benefitted from the reuse of the previous factorizations
when using the direct sulver, because only the first two nonlinear itera-
tions required a factorization. The net result was a comparable time be-
tween the direct and iterative solvers. T .. Cerrillos dam models were

"r also well-conditioned. However, in neither case did the stiffness matrix
remain unchanged, explaining the superior performance of the iterative
solver.

2-D Versus 3-D Comparison

A very important aspect of this research is to determine whether a 3-D

study is needed in the saturated flow portion of GL's RMA modeling ef-
fort. Figure 12 is a color contour plot showing the difference in total head
values between the 2-D and 3-D results. A 3-D result for a given 2-D
node was obtained by averaging the values of head for the seven 3-D
nodes corresponding to the 2-D node. The scale is set this way so that the
plot can be directly compared to another plot described later in this report.

18: Chapter 2 Saturated Flow
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Figure 12. 2-D versus 3-D comparison

Yellow is selected as the color of no differencc. While this is the domi-
nant color, the maximum difference of about 10 ft (3.048 m) exists in
some areas. Some variation is expected, so this amount seems reasonable.
It is important to realize, also, that the boundary conditions are essentially
2-D boundary conditions. Head is specified a constant for the entire verti-
cal area where he: ,1 is known. True 3-D boundary conditions would have,
for instance, a river specified more accurately.

"Chapter 2 Saturated Flow



Grid Display

One of the most important graphics tools to use in doing an FEM
model study is a program to display and edii the FE grid and other input
data. There are many software and hardware options for this, and the
topic may even seem a bit trite to some. However, because the author be-
lieves so strongly in the use of scientific visualization tools not only for
understanding the results but also for ensuring the input data are correct,
this section is included. Since results from the commercial package
MPGS I ave already been shown, what is featured here is a quickly written
(a few days) program called SHOWGRID. This program was written by
Mr. Scott D. Weberg, SVC, for the Silicon Graphics workstation using

their Graphics Language software. SHOWGRID caa be used to view the
2-D grid, its boundary ccnditions, any scaler value, and any negative area
elements. Figure 13 shows a plot of the menus developed with initial
head being plotted for the node values. This can be compared with the
color contour plot from MPGS given in Figure 5. Figures 1 and 2 are also
SHOWGRID plots.

The primary problem that occurs with the grid is negative or badly
skewed elements. Figure. 14 shows a typical "bad spot" where the location
of an observation well ,ould have been accidentally moved so much that a
negative area element was created (highlighted element 1056). With pro-
grams like SHIOWGRID, these errors zan be easily spotted and corrected.
What is more difficult, however, is the detection of badly skewed ele-
ments. Figure 15 shows a zoomed area of the grid where an extremely
skewed element has been created, and Figure 16 shows how this is fixed.
Numerically, skewed elements such as these can cause severe problems,
and they should be avoided. However, the triangular elements turned out
to be much less susceptible to this than the brick elements with coincident
nodes. This is illustrated by the 2-D versus 3-D comparison (Figure 17)
for a grid containing several skewed elements like that of Figure 15. As
before, one would expect some differences in the two solutions, but the

rather large regions where significant differences occur were always
caused by skewed elements in the 3-D grid (the 2-D solutions were essen-
tially the same for the two cases). In fact, the large area where the differ-
ence is as much as 30 ft (9.144 m) (dark blue region) was completely
turned to yellow by fixing the one skewed element shown in Figure 15.
Figure 12, corresponding to the good grid, can be directly compared to the

plot in Figure 17 to see the dramatic effect of fixing all such elements.

Summary and Conclusion

The 3-1) study showed that for a large plan view flow problem where
essentially 2-I) type boundary conditions (a constant head is applied the
i'1ll depth of the aquifer arid fully p1enetrating wells ire used) are cm-
ployed, a 3-I) solut ion is not usually necessary for the flow complutatiolns.
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'• Figure 13. SHOWGRID menu with initial head values

- .•4 "]'Thc 10-ft (3.048-rn) maximum difference in head is not significant over----

boundary condition of, say, a river or do a more localized study such as in

the case of the Cerrillos Dam analysis, a 3-D solution is required.

Contaminant transport (Chapter 4) is another matter. Even if the flow

is horizontal and the heads are the same in the z direction as computcd

from a 2-D plan view calculation, a 3-D study is required to get an accu-

rate result for concentration of contaminant. This is because advection

"' will carry the contaminant horizontally in all (directions, and dispersion

will also distribute it vertically.
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T odrn en... nal ....... la e, ........... are mnore "c •,,,, than nine-i~ode
brick elem'ents 'with coincident nodes With respect to' sukewness.' A 3-D
prism or tetrahedron element should be considered, or a careful examina-
tion of the 2-D grid is required.

"T'his exercise has also shown that visualization tools are essential when

doing a numerical study to both ensure the correctness of the input data
and to properly interpret the results. Further, without the use of a large
scientific computer such as the Cray Y-MP, a full study of a large 3-D
problem is almost impossible. This is especially true of time-dependent
nonlinear multiphase flow and contaminant transport computations.

K22 I
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3 Unsaturated Flow

I |
Introduction

Chapter 2 gave some extensive work using the FEM for saturated flow.
This chapter will investigate unsaturated flow using another computa-
tional technique typically used by the aerospace engineers, which is the
finite volume method (FVM). The FVM is very similar (and sometimes
identical) to the finite difference method. The following will be presented:

a. Governing equations. The equations used in this work to model the
unsaturated flow cast in strong conservative form for a curvilinear
coordinate system.

b. Computational procedure. The finite volume equations used to ide-
alize the governing equations and the numerical scheme used to
solve them.

c. Comparison of results. Results obtained from this FVM technique
are compared with FEM results for various problems, including labo-
ratory tests and analytical solutions.

Governing Equations

The governing partial differential equation used for unsaturated flow
for both the (x, y, z) and the (ý, rI, ý) curvilinear coordinate systems will
now be given.

(x, y, z) equations

The equation at a given (x, y, z) point in space and time t in matrix
form is

Vr {kkl (Vh + Vz)} ±q = F (4)
at
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where

h = pressure head

[ks] = saturated hydraulic conductivity matrix

kr = relative hydraulic conductivity

q = source or sink

F = water capacity given by

F =dO (5)
dh

where 0 = is the moisture content

In an unsaturated zone of flow, F and kr are functions of h, making Equa-
tion 4 highly nonlinear. Equation 4 is also at times put in terms of the
total head or potential (p

= h + z - (pd (6)

where (Pd = datum

Equation 4. using Equation 6. now becomes

VT {kr [k ] Vc) + q = F a9 (7)r s at

This work uses Equation 7. Different expressions for kr(h) and 0(h) are
used as these are empirically based.

(•, rl, t) equations

The approach taken is to first map a region of geometry into a (ý, Ti, •)
curvilinear coordinate system. For example, Figure 18 shows three sur-
faces of a circular region of soil around a well (0 type grid in 3-D) that is

mapped into a square box grid in the (4, T1, ý) system as shown in Fig-
ure 19. The inner cylinder at the well and the outer cylinder at the radius
of influence are il = constant surfaces, and the horizontal grid at the bot-

torn plotted using thick lines is a = constant surface.

Let J be the determinant of the transformation matrix between the two
coordinate systems for a nonmoving grid as follows:
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Figure 18, 0 grid
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"x a z (8)
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Figure 19. Square box grid

Appendix A contains derivations for certain equations in the curvilin-

eur coordinate system. Using Equation A16 for the strong conservative
form of the divergence of some vector [F}, we have

JVT(F} = V4T(F) + -ý rJlF} + (Vý'{F_

3(9) =

where 1i 1, 2, 3 represent e, il, and •, respectively. Equation 9 ap-
plied to tquation 7 produces

_ 3

[~V~{k at (0

Equation A12 can now be applied to the gradient of the potential to
produce

3 3 a (ýVj {kL [k] ýj- (JpV~j)j + Jq = F (11)

II I __
i=lj=l j a
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Finally, using the substitution

(D = Jp (12)

in Equation 11, the following final result is obtained:

3 3 a (iV4 jk kr.ksJ- ( )VVj) + Jq = -(13)

Equation 13 is the equation used in this FVM research.

Computational Procedure

"There are enormous varieties of computational techniques that can be
investigated for the solution of Equation 13. This effort can only choose
some of the most promising techniques and investigate them. The chosen so-
lution will now be presented, and for simplicity, a 2-D formulation is given.

Finite volume cell

The standard FV strategy is to consider each computational cell an FV
with the unknown variables to be computed evaluated at the center of the
cell. However, the FEM usually has the value of the unknowns computed
at the grid points (node points). So, as shown in Figure 20, a modified
way of defining the finite volumes (McCormick 1992) is to use the dotted

S. . . .• . . . . . .. . . . . . . .. . . . .:.. . . .. .. .. . .. ... • . . . . . . .

S. . . . . . . ;. . . . . ... • . . . . . . . . . . . . . . . .,. . . . . . . . ;.. . . . . .. . . . . . . . . , . . . . . . . .

Figure 20. 2-D computational grid
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lines to form cells around the node points. This has the advantage of al-
lowing the identical grid to be used for FEM or FVM, but a disadvantage
is the cells along the boundary have reduced size by one-half or one-
fourth. This problem has. however, been minimized by a judicious soft-

ware design of subroutines.

Discretized equation

To understand how Equation 13 is discretized, first consider the simpler
equation

.r DO + D(14)

where p, q, and r are each some continuous function. Let each computa-
tional area be a unit square. Also, an implicit formulation is sought at
time t = (n + 1)At with an Euler approximation to the time partial deriva-
tive. Then, multiplying Equation 14 by d4d¶i and integrating over the unit
square of a node at grid point (i, j) gives

f n+ I fn + I n+l1 -n+1 _i 1, j (15)1+ 1 Q+ 2 gl~j -2 A t•+2j i--•jJ gi, +-2 J-j A

where the one-half designations represent evaluation of information on the
respective edges of the finite volume cell. Traditionally, it is stated that
the value at the node point (center of the cell) is taken as the constant
value over the entire cell, and that is why the integral signs can vanish.
However, a better interpretation is that the value at the node point repre-
sents the average value of the variable over the cell. In like manner,
rather than thinking of the one-half terms as being constant on the line seg-
ments, the only restraint required is that this value represent the average
value on its corresponding line segment.

This same process can now be applied to a 2-D version of Equation 13
to ootain

[i. .
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S(V•T•-k[k] (j n+1
(f fn+1

+ (V4TH
-1"ki+ 21k

- V4Tfk,[k,] 
(O III n+1

- .•Vn)T- 1-.

+.q -.+ ,~.J.,nAti

Let the remaining partial derivatives in Equation 16 be approximated by
central differences. Then the first term of Equation 16 becomes

IV T ((DVr

L +r ,j (17)

i[1 ~r[ si)+i. {Vi*+ V. ,+I
YL _+•I -,j +
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Ai, the thiru wrrn of Equation 16 is now

n 1 n+l

.+ý 1/T r •n)+j' { •n,., + l (18)

- vI . Vk +1; }
i+ 'j- 1 I+ 'j- 11

H

Define the terms

{A+BT = Tk [k S .

)i+ ,

izI n+I_1 + n

A T =- TV. (20)

W,,- ,B-}T =j'l Tkri[ks]n4I I

F I
HI= k [kI~y

Then Equation 16 becomes c

21X X Cn+l 40n+l 1q F n +I)on (20)
-.. , ~i+raj+n1 0~ At q ' i, j tij

where the C's are Al)fis trat ae still functions of the dependent vari-
n.-l,, an - i,, 1.' ...Aq• u1 ..... , . o t- -,,- 20 re mains a nonlinear equation. Nehvreith ess,

-,+!the C', ia a nine-point template format are given in Table 2.

Sq Computation of geometric quantities

,2 The geometric quantities can be computed in a varie•, of ways. Each
,,• "•element (Figure A l) is treated as a four-node isoparametiric element.

I • •Thus, the transformation between x and (T, rl) becomes
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Table 2
Nine-Point Template

2 2

2 2

0 (A-}TVý - (A+ + A }TV4 {A+ )TVý

- {BS + B-}TVTI

1 _n+_

-1 + (- + Tvn
2 +

2 2

x = (to + I ) (11 + 1 - 1) x 1 + ( 1 -10( + I - 11) X 2

+ C•- ) (11 - 110) X3 + &P, + I )(11 - 11) X4

whcrc

(to, TIo) = integer values of the computational coordinates for
the first node of the computational element

X1, X2, X3, and X4 = x coordinates at the node points

A similar expression to Equation 21 exists for y. Terms like

a = ( 11 0 + 1- 1) X 1 + ( 1 0 + 1 - I) x 'z

+ (11 - 11) X3 - (11 - "IdX4

can now be computed using Equation 21. Evaluating Equation 22 at the
center of the computational element yields

=• (X2 -X1 + X3 - 4) (23)
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Values at the node points are computed by averaging the surrounding
center values (four for internal nodes) using Equation 23. Finally, J, V4,
and Vil are computed using Equations A4, A6, and A7. Matrices such as
those in Equation 19 are first evaluated at the nodes and then averaged to
find values for the sides.

J1
Nonlinear Iteration

Although terms In Equation 20 can now be computed, Equation 20 is
still nonlinear, so some iteration scheme must be adopted. Different
schemes were considered, including the Picard and Newton schemes (Putti
and Panlconi 1992). Presented here is the scheme that worked well forthe problems tested.

Modified Newton scheme. Given a nonlinear equation

f(0) = 0 (24)

but at the k'th iteration

f((k) o 0 (25)

then a Taylor Series expansion can be used as follows:

f(W+ 1) = fW) + af )A + (26)

So a first-order approximation is to set the right-hand part of Equation 26
to zero to yield

O f(e) (27)

Now, apply Equation 27 to

1 1 "--

IiI Cjin i+ m , j + n
m=-1 n=-- 

(28)

(from Equation 20) in such a way as to neglect the partial derivatives of C
and F to obtain
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1 1
Aok+ I (1 (29)

m=-I n=-I

Solution of equations. Equation 29 can be solved by any number of
direct or iterative techniques, such as forms of Gauss Elimination or the
preconditioned conjugate gradient method. The unknown variables then
can be updated with the process continuing until the update.: become so
small that the solution for the current time-step has converged. However,
an under-relaxation type method (the conjugate gradient method will be
tested later) worked well enough for the problems tested. Because of the
nonlinearity, first the Gauss-Seidel type computation

t D~k+ I A. (rDk)_ 1+m,j+n Q~~

A-.jM=-I n=-I

(30)

+ CkJ-A

was performed. Then, after results foi all nodes have been done, update
using

(.+ 1 = ,(1 ý. + aA'.+ (31)
LJ I ,J IJ

where a varies between zero and 1. Equations 30 and 31 can be executed
several times before updating the C's and F, but it was more efficient to
update all data after each iteration. Since only scalar operations are done,
each iteration is very fast. Of course, more iterations will be required, so
only a partial payoff is realized.

Test Problems

Two test problems will now be given to show the effectiveness of the
.:•j solution presented. Comparison with FEM results will also be made.

Dupuit's problem

The first problem is the classic problem of steady state, unconfined
flow in an earth embankment with vertical sides and an impervious base
as shown in Figure 21. Water flows from headwater to the exit face where
the pressure = 0 line represents the free surface. The embankment is 100
by 100 ft (30.48 m), the headwater level is at 100 ft, and the tailwater is at
20 ft (6.096 mn). The exit point where the free surface intersects the down-
stream vertical boundary is 40 ft (12.192 rn). A grid of II x 1I = 121 nodes

I '16
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Figure 21. Dupuit's problem

and 10 x 10 = 100 elements with Ax = l0ft (3.048 m) and Ay = 10 ft
(3.048 m) was built and run on the developed FV program and a 2-D
saturated, confined/unconfined flow FEM program. Again, because of the
way the FV program was constructed, the identical grid and boundary con-
ditions can be used in both codes.

The 2-D FEM program (2DSEEP) computes "stiffness" type matrices
and then assembles them to form the set of equations to be solved. These
stiffness matrices are numerically integrated by evaluating the integrand
at certain integration points and then using a Gauss quadrature formula.
Typically, 2 x 2 = 4 integration points are used, but because the free sur-
face can go through an element, 2DSEEP uses 4 x 4 = 16 integration
points. The relative hydraulic conductivity is then set to 0.001 for an inte-
gration point with pressure head of less than zero. This integration pro-
vides a smearing process so the transition is not so abrupt.

Since no integration is used in the FV algorithm, a 5-ft (1.524-m) tran-

sition zone was therefore provided where the relative hydraulic conductiv-
ity varied from I to 0.001 when the pressure head varied from 0 to -5 ft
(-1.524 in). Relative hydraulic conductivity was then kept at 0.001 for all
values of pressure head less than -5 tt (-1.524 in).

Finally, the moisture capacity F in Equation 5 is set to zero to eliminate
the time-dependent aspect of Equation 4 for a steady-state solution.

Figure 22 shows a comparison of the free surface for the FEM and FV

solutions. Note that they are rather close. Also, the running times of the
two solutions can be compared. It must be emphasized that the FEM
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Figure 22. Comparison of FEM and FV free surface

technique has significantly more computations I -cause of the numerical
integration process and the solution of a banded system of equations at
each iteration. In general, fewer elements for the FEM solution are there-
fore needed compared to the FV grid. Also, because a banded system is
solved compared to a relaxation iteration, much fewer FEM iterations are
needed. With these thoughts in mind, the FEM solution took I min,
13 see, and seven iterations on a 486 class PC running at 33 mhz, and the
FV solution took 12 sec with 124 iterations. It should also be observed
that the diagonal terms in the template in Table 2 go to zero for this square
grid, making the formulation similar to a standard finite difference algorithm.

Laboratory tesi problem

Results from an experimer •il study of 2-D transient unsaturated/saturated
flow with water table recharge (Vauchi, Khanji, and Vachaud 1979) will

now be compared with results from both the FV formulation and a 3-D
transient unsaturated/saturated FEM flow code. The problem, as shown in
Figure 23, consists of flow i.a a homogeneous soil of saturated hydraulic
conductivity 35 cm/hr in a tank 600 cm long, 200 cm tall, and 5 cm thick

with an impervious bottom. Because of symmetry, only 300 cm of the
tank are modeled with the center line (AF in Figure 23) being treated as
an impervious boundary. A constant pool elevation of 65 cm is main-
tained along BC in Figure 23 with the boundary CDE covered to avoid
evaporation. EF is initially covered and the tank is allowed to completely
settle. Then EF is uncovered and a flow rate of 14.8 cm/hr is applicd to
the system for 8 hr while holding BC at the constant total head o,' 65 cm.

i38
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Figure 23. Laboratory problem

The relative hydraulic conductivity in the unisaturated r%-';:.:fl was deter-
.ined experimentally to be

k A (32)

rur -( I)

wee A=2.99 x106

The moisture content equation was also determined experinienitally and by
the use of a le.fsqae *, t b

0 0 N ( (33)

where

ON =-0.30

(x = 40.00

~=2.90
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The grid (shown in Figure 24) consists of a 16 x 16 structured grid
with the intervals slightly different to align with key points. For example,
the dot is a node at (161, 79) where pressure head data were collected. At
was set to 0.05 hr and allowed to grow 20 percent a time-step until a maxi-
mum of At = 1 hr was reached. Twenty time-steps were done for a total of
8 hr. The proper subroutine was modified to incorporate Equations 32,
33, and the derivative of Equation 33 (from Equation 5), and the problem
was run on both the FEM and FV codes. Because of the nature of the
water capacity curve (Figure 25), the FEM program would not converge,
and the FV solution converged only by using a small oc = 0.1 in Equa-
tion 31 for the first few time-steps. The FEM algorithm uses a Picard-
type iteration strategy, while the FV scheme uses the Newton-type
iteration as previously described. However, tabular forms of Equa-
tions 32, 33, and F (27 data points), with F not allowed smaller than 0.001
for large -h, were used with the FEM code, and convergence was then
achieved. A Picard-type algorithm was implemented in the FV code, and
the same lack of convergence was observed. Newton-versus-Picard itera-
tion is an important research topic, so at least for this problem and im-
plementation, the Newton algorithm is superior.

Figure 24. Grid

The results for the 40 time-steps for both the FV and FEM solutions
were then obtained, and the free surface was compared with the laboratory
results as shown in Figure 26. The dissipative error in the FEM solution
is more than that of the FV implementation. F being modeled more accu.-
rately in the FV code could have had an impact as well.

40
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Figure 25. Water capacity curve
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Figure 26. Comparison of laboratory, FEM, and FV results
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Summary and Conclusions

There are many more problems that can be considered in unsaturated

flow. There are problems with difficult geometries and heterogeneities.
In some cases, the FEM will function better, and in other cases, as has
been demonstrated, the FVM will function better. But it can be concluded
on the basis of this study that alternative techniques such as the FVM can
be a powerful tool for groundwater modeling.

Lý6 I

I'.
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S4 Contaminant Transport

Introduction

Chapter 3 showed the application of the FVM to unsaturated flow with
good results. This chapter will investigate the effectiveness of the FVM
for contaminant transport. There are several higher-order numerical tech-
niques with one being the Lagrangian-Eulerian Method (LEM) (Yeh
1990). This technique has almost exclusively been used with the FEM, so
this chapter shows the results of R&D using both FVM and LEM. The
following will be presented:

a. Governing equations. The equations used in this work to model con-
taminant transport, including the one used for the LE approach.

b. Computational procedure. The LE algorithm in an FV environment.

c. Comparison of results. Results obtained from this FVM technique
are compared with HFM results for analytical solutions.

Governing Equations

The governing partial differential equation for contaminant transport in
unsaturated porous media at a given (x, y, z) point in space and time t is

•"j'•J(0_ S (34)

+P V+V(C)=V (ODVC)(34)

- X (OC + PbS) + QCIn

where

0 = moisture content

C material concentration in aqueous phase (M/L 3)
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Pb = bulk density of the medium

S = material concentration in adsorbed phase (MIM)

v = discharge velocity vector

D = dispersion coefficient tensor

= decay constant

Q = source rate of water

Cin material concentration in the source

For this study, the linear isotherm model for adsorption is used, which is

S = KdC (35)

where Kd is the distribution coefficient

The ij'th component of the dispersion coefficient tensor d. is given by

d = - lv0 15ii + (aL - aT) -V + amiiJ (36)

where

aT = lateral dispersivity

aL = longitudinal dispersivity

vi = i'th component of v

am = molecular diffusion coefficient

't = tortuosity

and

u (37)

=0 i ;-j

Equation 34 can be expanded and combined with Equation 35 to produce

(0+ PbKd) - + v • VC + + V.v C
Fat (38)

= V (OD VC) - X(0 + PbKd) C + QCi,
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Also, unsaturated flow is modeled by

0 + v V= Q (39)

Equations 38 and 39 can be combined to produce the follow;ng governing
equation used in this study:

(+ PbKdac+ Y-+vVC = V.-(OD -VC
(40) -

-[X. ( + PbKd) + Q] C + (40),

Eulerian Versus Lagrangian Approach

The typical approach in 2-D is to stay at a given (x, y) position in space
and observe phenomena as they pass. This is known as the Eulerian sys-
tern and is represented by Equation 40. Another approach is to have the
observation point move as well at the same velocity as the particles of
fluid (Lagrangian system). The Eulerian approach is modeled using a
fixed grid, and the Lagrangian approach can be handled using a moving
grid with each node point moving at their respective velocities. This can
lead to a skewed grid after a while, so a modified approach (LEM) is used
in this study.

Using the chain rule of differentiation, the change of concentration for
a node in a moving grid is given by

-(ct t a + (acJx " (41)

P Y

where the subscript gp represents grid point, the subscriptfp represents a
fixed (x, y) point in space, 'u is the speed of the grid point in the x direc-
tion, and 'u is the speed of the grid point in the y direction. The first time
derivative is often written with a capital D, and the second time darivative
is what appears in Equation 40, so rewrite Equation 41 as

DC_ aC + VC (42)
Dt 4t ).

where i = grid point velocity vector

Equation 42 can now be substituted into Equation 40 to get
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+ PbKd [Dt + PbKd (43)

- (OD - VC) [X 0 + Pbd) + QC + Q __

So if the velocity of the grid point is

'7 (44)
II0 + Pbgd

then the Lagrangian equation representing contaminant transport becomes

DC V (D"

1(O+ PbId)- - = V. (D. VC (45)

-x [ +e PbKd) + Q] C+QC.l

Computational Procedure

It must be emphasized that the resulting concentrations from Equation
45 are for a grid that has moved. Therefore, the following two steps must
be performed in either order:

a. Lagrangian. Compute an advection comnribution using grid point
speeds according to Equation 44.

Sb. Eulerian. Compute dispersion and other contributions using Equa-
tion 45.

In this work the advection step is first.

Lagrangian step

The FV transport code that was written for this research takes as input
the moisture content and discharge velocity for each node and each time-
step, Therefore, for a given node P (as shown in Figure 27 where both the
velocity components are positive), grid speed velocities at time-step n can

be computed by

v n (46)•n _ __

0' + PbKd
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Figure 27. Grid point

The distance node point P travels during a time-step At is

- = + + I t(4 7 )

Now if the approximation is mide that point P' travels the same Ar to
"reach point P for the time interval At (backward tracking), then the advec-
tion concentration C* at time -i+l for node P is simply the concentration
at P'. However, the grid velocity at P' is not in general the same as it is at
P, leading to possible error. A correcting formulation follows.

Computation of C* at P'. As before, assume a four-point isoparamet-
ric finite element formulation for each cell as shown in Figure Al, except
that now let the parameters ý, ql vary between 0 and 1. Then inside each
element

Ix Y 0 0 (I-r) + 0 1)

) 2 (49)
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where

V = grid speed at P'

rp = vector containing the (x, y) coordinates of point P

For the i'th node of the cell, define the quantities

R = (50)

Applying Equation 48 to the prime variables in Equation 49, using the def-
inition of Equation 50, and collecting terms yields a set of equations to cal-
culate (', rl') as follows:

(xI -X2, + X3 -X4) 4'Tl' + (X2- XI) '

+ (X4 -XI)'= xp -X1 5

(Y¿ I Y2 + Y3 -Y4) 4"1" + (Y2 -YI) •

+ (Y4 - r) q'Yt' Y,

Rewrite these equations using constants a 1, a2, b 1, b2, c1, C2 , d1, and d2 as

+ bjý' + c,11' d,

(52)
-'7' + b2ý' + c2 "1' d2

°.- first of these equations can be solved for rl' to yield

d1 - b ,' (53)
C1 + aX•

Equation 53 can now be substituted into the bottom portion of Equa-

tion 52 to obtain the quadratic equation

(alb2 - a 2b)' 2 
- (aid2 + bC - clb 2

(54)
-dla2)9' - , + dlC2 = 0

which can now be easily solved for ý'. This done, il' can be computed
from Equation 53, and finally, substituting the values of ý' and -q' into the
C row of Equation 48, the value of concentration at P' is given.
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Determining what cell to locate P'. Figure 27 shows that when both
components of grid speed are positive, the negative x and y direction is
where the proper cell is. Since this FV formulation is on a structured grid,
the process of finding the proper cell is to simply look in the four adjacent
cells by solving Equation 51 for ý' and 11' and selecting the cell where •'
and 11' are both between 0 and 1.

Eulerian step

The final step is to use ihe C* values in conjunction with an IN repre-
sentation of Equation 45 to determine the concentration at each node,
Since Equation 45 is remarkably similar to Equation 7, a very similar for-
mulation can be used. With the definition

S= JC (55)

the curvilinear coordinate version of Equation 45 is

3 3

Y,~ tl \7 i {[Jj(Z7 1)} X(0 + PbKI) + (56)Dt 1j--- I (- (56)

. JQC.n1 = (0 + Pb'd) Dt
Dt

SThe IV representation is

-4 1) (O•Vý) oil)]- -,V4

2 211 + to11
A-i{! IVl -I] (D4 (ViI7 4 O[D] (O4)-,

.•2 1j- (57)

+I I IioJv)OD1 n

(- ()VI
n(xl + -Q) 01. jcl (J, +(."+ 1.-QO~ JQCi. •,

Mi j "i" At
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where
= n. + 1 (58)

It is important to note that (D* appears in the time derivative term instead
of q•n. The exact same solution technique used previously can be used
here, except now the system of equations is !inear.

"Test Problems

Two test analytical problems will now be given to show the effective-
ness of the solution presented. Comparison will be made with FEM
results.

I1-D steady-state transport

The problem consists of one-dimensional (I -D) steady-state contami-
nant transport over a length L in a flow of discharge velocity u, a moisture
content 0, and a dispersivity D. The initial concentration C of the contarni-2. nant is 0. and then a spill occurs, giving boundary conditions of C = I at
x - 0 and C = 0 at x = L. The governing equation is

a~c U ac(59)
D 2-.--- = 0

Dx2  0ax

and the steady-state solution is

SxUt (60)

Qx) -eOO 
_eOD

1 - eOD

The value of the variables used are L= 100, u = 0.2, 0 = 0.4, D = 50,
and At = 10. A grid, I I x 2, was created with a constant Ax = 10, and the
problem was run on both the FV code and an LE FEM program. The FEM
and FV results were essentially identical, and a plot of the analytical ver-
sus numerical results is given in Figure 28. These results are certainly ac-
ceptable. However, if u is increased, a finer or adaptive mesh is required
for the same quality result.

2-D transient transport

Tkis problem consists of saturated flow in a rectangular vertical cross
section of sand of size
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Contaminant Transport
1 1 -D Steady-State
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Figure 28. 1 -D steady-state results

0 5x _a

(61)
O y<L

that is initially clean until a spill occurs on the top of the sand (y L). A
concentration C. in a strip of length s in the middle of the top of the sand
is maintained for a time to, and then it decays expedientially with a decay
constant (x. Water is flowing in the +x direction with a discharge velocity
u. However, no contaminant due to dispersion flows through the bound-
ary at x = a. Adsorption into the medium of bulk density Pb occurs lin-
early with a distribution coefficient of Kd.

The governing partial differential equation is

(s+ PbKd at+UaC= D C + D yCJ (62)

where

Os = maximum moisture content

D1 = dispersion coefficient in the x direction

-D 2 = dispersion coefficient in the y direction
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The initial conditions are

C(x, y, 0) = 0 (63)

and the boundary conditions are

C(0, y, t) =0 -( (a, y, t)= 0 C(x, 0, t)= 0
ax

C (x, L. t) = C0  0< t < to

for a - s < x < a + s (64)
2 2

=O t > to

As part of this research, the solution to the problem was derived as

C (x, y, t)0 - 28Dca -d1 n2%

R L = , (65)

n (-1)n+ (T1 -7. T2) esin%).x sin- L.y

where

R I1+ PbKd (66)

and

U (67)

%I is the i'th solution to the equation

fisin Xa + X1 cos Xa = 0 (68)
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Also,

1 {i + ?", Cos X 2

(69)

e ~ sill x + Cos (aS +2

The two transient terms T1 and T2 are given by

1 ('70)

and

"72 = + - -- x(t-o) + CA(' I-)] U(t - t) (71)

where

=R I -D2  
(72)

and

U(t - t 0 t < t
(73)

=1 t~to

The value of the parameters are given in Table 3. A 21 by II grid was
used to solve the problem using both the FUM and FV cudes. F'igure 29
shows a comparison of analytical, FEM, and IV results for position (100,
18) for 10 time-steps where At 1.0. A higher level of accuracy can be

"Fable 3
Value of Parameteis

Co 1.0 a 100.0

L 20.0 s 20.0

to 10.0 1.0

OS.. 0.4 P.. b .1.2
Ku 0.1 u 2.0

6U 0.0 D•e 5.0

S53
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Contaminant Transport
1 2-D Transient
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FIgure 29. 2-D transiont results

achieved by refining the grid near the top where the concentration is ap-
plied. However, the current grid is sufficient to show the desired compari-
son of results.

Scientific Visualization

Visualization of contaminant transport analysis results is an important
aspect of understanding the volumes of output data. There are several
techniques used, and there is potential for more research, especially with
the use of translucency. One technique is to take a value of the containi-
nant and create: the 3 -D geometry representing the isolevel and perform a
hidden surface plot. Another option is to cut a cross section through the
piume at a particular time and plot a line or color contour of concentration
on the cross section. Figure 30 shows a plume from a 3-D version of the
above problem at t = 10. The spill now occurs on an s by s square are, on
the top of the a x b x L rectangular region of porous media with, in this
case, a = b = 100. Figuie 30 contains an isolevel of C = 0.4, a color con-
tour plot of concentration along the vertical cross section, x = 50, and a1 color conlour plot of concentration along the vertical cross section, y = 50.

As shown in Figure II for saturated flow, the surrounding porous media
can be represented using translucent colors.
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Appendix A
Derivation of Curvilinear
Coordinate Equations

Purpose

The purpose of this appendix is to derive expressions used to cast par-
tial differential equations in strong conservation form for a curvilinear co
ordinate system. These include the geometric conservation law, the
gradient operator, and the divergence operator. 2-1) versions of the equa-
tions are derived for simplicity.

Coordinate System

Each quadrilateral cell or element of a finite volume or Iinite element
grid is transformed into a square (see Figure Al ) fio' an ( v) comvrdinat,
system to a curvilinear (i, l) coordinate system.

3

4

2

Figure Al. Transformation
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Geometric Conservation Law

The geometric conservation law is a basic tool for placing ecIuations in
strong conservative form (Thompson, Warsi, and Mastin 1985). A matrix
orientcd derivation of this equation will now be given. The chain rule of
differentiation states

ax +fay (Al)
x a'• +y

wheref is a continuous function. The matrix version of this equation is

_ aý I axI

An alternate way is

Let the determinant of the matrix in Equation A2 be defined by

j = ax Dy ax _y (A4)
a401 On n aý

The inverse of the matrix in Equation A2 can also be multiplied to both
sides of Equation A2 to produce

J xi an Jax a
lay1 an aý-JtanI

Ki Comparing Equations A3 ad A5n givcs

References cited in this appendix are listed following the naiii tcxt.
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and

0111 ay(A7)a I
(-hi aJx

Equations A6 and A7 can, now be used to evaluate

a(JVa2 a(Yi ___+ _ (A8)
aj + a •) = 46211J + a2"l"

It is clear now that

W(vý) + Wy = 0 (A9)

which is the geometric conservation law.

Gradient

The gradient of f from Equation A3 is

Vf= V- + V71 -- (A10)

Multiplying Equation A 10 by J and Equation A9 byfand adding gives

AL A •-JV%)-f + a(V-- (All)
JVf=JJv) + JVIJ +-0 f f (All)

Combining terms gives the desired result

.V = a(J(l+l) (A 12)

Divergence

The divergence of a vector

fli (A 13)
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in matrix notation becomes

-Aa af (A 14)
VT(F} = 'x + -y

ax ay

Now if Equation A 12 is modified to the form of an operator, this yields
Ao V 0 (A15)

Taking the transpose of Equation A] 5 and operating on {F) gives
JV(F) (jVaT(F) (A16)

J~r{F}= (v~r{F}) + (J¶ (• {F} )

which is the desired result for the divergence.

.4
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